Revisiting the “flip-flop” Instability of Hoyle-lyttleton Accretion
نویسندگان
چکیده
We revisit the flip-flop instability of two-dimensional planar accretion using high-fidelity numerical simulations. By starting from an initially steady-state axisymmetric solution, we are able to follow the growth of this overstability from small amplitudes. In the small-amplitude limit, before any transient accretion disk is formed, the oscillation period of the accretion shock is comparable to the Keplerian period at the Hoyle-Lyttleton accretion radius (Ra), independent of the size of the accreting object. The growth rate of the overstability increases dramatically with decreasing size of the accretor, but is relatively insensitive to the upstream Mach number of the flow. We confirm that the flip-flop does not require any gradient in the upstream flow. Indeed, a small density gradient as used in the discovery simulations has virtually no influence on the growth rate of the overstability. The ratio of specific heats does influence the overstability, with smaller γ leading to faster growth of the instability. For a relatively large accretor (a radius of 0.037Ra) planar accretion is unstable for γ = 4/3, but stable for γ ≥ 1.6. Planar accretion is unstable even for γ = 5/3 provided the accretor has a radius of < 0.0025Ra. We also confirm that when the accretor is sufficiently small, the secular evolution is described by sudden jumps between states with counter-rotating quasi-Keplerian accretion disks. Subject headings: accretion—hydrodynamics—shock waves —turbulence
منابع مشابه
High Mach-number Bondi–Hoyle–Lyttleton flow around a small accretor
In this paper, we discuss a two-dimensional numerical study of isothermal high Mach number Bondi– Hoyle–Lyttleton flow around a small accretor. The flow is found to be unstable at high Mach numbers, with the instability appearing even for a larger accretor. The instability appears to be the unstable radial mode of the accretion column predicted by earlier analytic work.
متن کاملA fresh look at the unstable simulations of Bondi - Hoyle - Lyttleton accretion
The instability of Bondi-Hoyle-Lyttleton accretion, observed in numerical simulations, is analyzed through known physical mechanisms and possible numerical artefacts. The mechanisms of the longitudinal and transverse instabilities, established within the accretion line model, are clarified. They cannot account for the instability of BHL accretion at moderate Mach number when the pressure forces...
متن کاملA Review of Bondi–Hoyle–Lyttleton Accretion
If a point mass moves through a uniform gas cloud, at what rate does it accrete material? This is the question studied by Bondi, Hoyle and Lyttleton. This paper draws together the work performed in this area since the problem was first studied. Time has shown that, despite the simplifications made, Bondi, Hoyle and Lyttleton made quite accurate predictions for the accretion rate. Bondi–Hoyle–Ly...
متن کاملHoyle–Lyttleton Accretion onto Accretion Disks
We investigate Hoyle–Lyttleton accretion for the case where the central source is a luminous accretion disk. In classical Hoyle-Lyttleton accretion onto a “spherical” source, accretion takes place in an axially symmetric manner around a so-called accretion axis. In the spherical case the accretion rate Ṁ is given as ṀHL(1− Γ), where ṀHL is the accretion rate of the classical Hoyle–Lyttleton acc...
متن کاملThree - dimensional Hydrodynamic Bondi - Hoyle Accretion . IV . Specific Heat Ratio 4 / 3
We investigate the hydrodynamics of threedimensional classical Bondi-Hoyle accretion. A totally absorbing sphere of different sizes (1, 0.1 and 0.02 accretion radii) exerts gravity on and moves at different Mach numbers (0.6, 1.4, 3.0 and 10) relative to a homogeneous and slightly perturbed medium, which is taken to be an ideal gas ( = 4=3). We examine the influence of Mach number of the flow a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009